WORKSHEET FOR CMD LINEAR EQUATION

Definitions:

Point 2, having coordinates (x_2,y_2) is selected to represent the concrete mix design (CMD) which has a target air content and unit weight as follows:

$$x_2 = 6.5 \%$$

 $y_2 = \sum$ Design Batch Weights ÷ 27.00 ft³
 $y_2 = \frac{\text{lbs} \div 27.00 \text{ ft}^3}{\text{lbs/ft}^3 \text{ (rounded to first decimal place)}}$

Point1, having coordinates (x_1,y_1) is selected to represent the y-intercept which has a theoretical air content and unit weight as follows:

$$x_1 = 0.0 \%$$

 $y_1 = \sum$ Design Batch Weights ÷ 25.24 ft³
 $y_1 = \frac{\text{lbs} \div 25.24 \text{ ft}^3}{\text{lbs/ft}^3}$ (rounded to first decimal place)

Solution:

slope =
$$m = (y_2-y_1) / (x_2-x_1)$$

 $m = (\underline{\hspace{0.5cm}} -\underline{\hspace{0.5cm}}) / (6.5-0.0)$
 $m = (\underline{\hspace{0.5cm}}) / (6.5)$
 $m = \underline{\hspace{0.5cm}}$ (negative value, rounded to the second decimal place)
y-intercept = $b = y_1$
 $b = \underline{\hspace{0.5cm}}$ [bs/ft³

Linear Equation:

Predicted Unit Weight = m (Air) + b

Predicted Unit Weight = ___ (Air) + ___ (note: calculation for Predicted Unit Weight is to be rounded to first decimal place)